报告摘要
Flooding is among the costliest natural risks worldwide and its impact is further exacerbated by global climate change. Backward erosion piping (BEP) is a leading cause of global flood protection system failures, as seen in the July 2024 dike breach at China’s second-largest freshwater lake. Despite its significance, BEP remains among the least understood geotechnical phenomena, particularly regarding its fundamental mechanisms. For this reason, current models are largely empirical or semi-empirical, with limited predictive capabilities. This talk introduces a novel dual random lattice modeling approach for 3D simulation of BEP, focusing on its time evolution. The framework's key innovations are: (1) the development of a new constitutive relationship to compute time-dependent soil erosion using rate process theory, and (2) a dual meshing strategy that enables accurate 3D hydraulic gradient calculations. Developed from fundamental granular physics, the constitutive relationship enhances understanding of BEP's physical processes. The model successfully captures key features of BEP, including spatial erosion progression, pipe advancement speed, and local gradient evolution. To the speaker's knowledge, this is the first model capable of capturing all these aspects. Additionally, it lays the groundwork for reduced-order models aimed at creating digital twins of flood protection systems, enabling system-scale flood risk assessment and mitigation—an ongoing focus of the speaker's work.
主讲人简介
王智杰博士,匹兹堡大学土木工程系副研究员。博士毕业于美国密歇根大学安娜堡分校土木工程系,并在浙江大学土木工程系获得学士和硕士学位。研究涉及计算岩土力学、岩土防洪设施的数字孪生、颗粒材料的时间效应、人工智能及智慧基础设施。研究成果发表于国际知名刊物,其中包括三篇发表于岩土顶刊GÉOTECHNIQUE。2024年发表于GÉOTECHNIQUE的有关岩土渗蚀本构模型的论文受到行业的广泛关注,并收到该领域世界先驱-荷兰水利岩土研究机构HKV和DELTARES的邀请,开展合作研究。研究工作受到美国国家自然科学基金和宾夕法尼亚州交通厅资助,研究成果直接吸引美国国家自然科学基金经费总额超过1000万元(151万美元)。学术荣誉包括ITASCA教育奖学金、密歇根大学优秀研究奖学金和密歇根大学RC Hurt奖学金等。为美国土木工程荣誉学会(Chi Epsilon)、美国土木工程师学会(ASCE)、ASCE岩土分会(G-I)及工程力学分会(EMI)会员。
协办单位:浙江省力学学会岩土力学与工程专业委员会、浙江大学岩土工程计算中心、浙江省岩土力学与工程学会本构理论与数值分析专业委员会